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Abstract—This is the system description corresponding to the
systems developed by the BUT team for The Third DIHARD
Speech Diarization Challenge. The systems for both tracks consist
of a DOVERlap fusion of an end-to-end NN system with x-
vector based clustering systems in the form of spectral clustering
and VBx. Given that the x-vector clustering systems do not
provide overlapping speakers, overlapped speech is detected by a
TasNet-based detector before the final fusion with the end-to-end
approach.

Index Terms—Speaker Diarization, DIHARD, VBx diarization,
end-to-end diarization, overlapped speech detection

I. NOTABLE HIGHLIGHTS

Our best submitted system for Track 1 follows the pipeline
described in Figure 1. Four systems are run in parallel on the
input to produce diarization labels. Three of those systems are
based on clustering of x-vectors and the remaining is an end-
to-end system. The outputs of all systems are fused; then, an
overlapped speech detector is run and an heuristic is used to
assign a second speaker in those segments determined by the
overlap detector. Finally, since the end-to-end system performs
substantially better than the rest on telephone conversations, a
telephone channel detector is used to detect recordings of that
domain. Telephone recordings are then processed only with
the end-to-end system while the other recordings are processed
with the whole pipeline.

Details about the methods and citations to relevant works
are presented in the following sections.

II. DATA RESOURCES

The list of datasets used to produce our systems is the
following:

• VoxCeleb 21

• AMI2

• ICSI: LDC2004S02, LDC2004T04
• ISL: LDC2004S05, LDC2004T10
• DIHARD III development set [1]

The work was supported by Czech National Science Foundation (GACR)
project “NEUREM3” No. 19-26934X, European Union’s Horizon 2020
project No. 833635 ROXANNE and European Union’s Marie Sklodowska-
Curie grant agreement No. 843627. Some of the methods were implemented
during the JSALT2020 workshop, hosted by JHU.

1https://www.robots.ox.ac.uk/ vgg/data/voxceleb/vox2.html
2http://groups.inf.ed.ac.uk/ami/corpus/

• CALLHOME: LDC96S34, LDC96S35, LDC96S37,
LDC96T16, LDC96T17, LDC96T18, LDC97S42,
LDC97S43, LDC97S45, LDC97T14, LDC97T15,
LDC97T19

• The artificial conversations to train the end-to-
end system were created from NIST SRE and
SWITCHBOARD: LDC2006S44, LDC2011S01,
LDC2011S04, LDC2011S09, LDC2011S10,
LDC2012S01, LDC2011S05, LDC2011S08, LDC98S75,
LDC99S79, LDC2002S06, LDC2001S13, LDC2004S07

• VoxConverse development set3

They were used for different parts of the system so we detail
in each one which datasets are used.

III. DETAILED DESCRIPTION OF ALGORITHM AND
RESULTS
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Fig. 1. Diagram of the final diarization system for Track 1.

For Tracks 1 and 2 we used very similar pipelines. For
being Track 1 the track where we spent most of our effort, we
describe it in more detail. For the final system for Track 2 we
simply explain the differences. Figure 1 presents the pipeline
for Track 1. We explain first the overall system and then each
subsystem below.

Four different diarization systems are used first: three of
them based on clustering of x-vectors and one end-to-end
(E2E) approach. The x-vectors are extracted only on speech
segments according to the oracle voice activity detection
(VAD). The end-to-end approach uses the oracle VAD only
as a post-processing step. The outputs of the four systems
are then fused using DOVERlap [2]. Since only the end-to-
end approach produces overlapped speech labels by default,
we apply an overlapped speech detector (OVD) and add a
second simultaneous speaker in some segments according to

3http://www.robots.ox.ac.uk/˜vgg/data/voxconverse/



its output. Finally, given the superior performance of the E2E
system on telephone conversations, we use a telephone channel
detector to find which recordings are telephonic and for those
we only apply the E2E approach. For the rest, we use the
pipeline already described.

A. VBx HTPLDA

This system follows the approach explained in [3]
and released in the recipe of VBx https://github.com/
BUTSpeechFIT/VBx/tree/v1.0 DIHARDII. In particular, the
x-vectors are extracted on 1.5 s long segments every 0.25 s
and over shorter segments when they are shorter than 1.5 s.
The x-vector extractor is based on a time-delay neural network
(TDNN) architecture and more details about its training can be
found in section “X-vector extractor” in the first page of [3].
The x-vectors are clustered using agglomerative hierarchical
clustering (AHC) with similarity metric based on probabilistic
linear discriminant analysis (PLDA) [4] log-likelihood ratio
scores as used for speaker verification and then the Bayesian
hidden Markov model (HMM) for diarization is applied. The
difference with the VBx recipe is that in this system a heavy
tailed PLDA was used instead of a Gaussian one; hence, the
name “VBx HTPLDA”. The rest of the recipe is explained
in [5], [6]. The parameters used in this system are as shared
in the recipe except for FA, FB and Ploop which were tuned to
obtain the best performance on the DIHARD III development
set (FA = 0.5, FB = 10 Ploop = 0). Results for this system
are presented in Table I.

TABLE I
RESULTS (%) FOR THE SYSTEM VBX HTPLDA FOR TRACK 1 ON

DEVELOPMENT AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 16.33 15.98 16.54 15.5
JER 36.82 33.35 37.82 33.61

B. VBx adapted PLDA

This system follows the VBx part of the system described
in [7]. The x-vectors are extracted using a system based
on a ResNet152 architecture and the details on how it was
trained can be found on that publication. The only difference
in VBx for diarization is that in the system for DIHARD
III an interpolation of PLDA models was used following the
approach described in [6]. The model trained on speakers from
VoxCeleb 2 was assigned a weight of 0.95 and the PLDA
trained on speakers from the development set of DIHARD III
was assigned a weight of 0.05. The only hyperparameter of
the model different to those shared in [7] is FB after tuning on
the development set of DIHARD III (FA = 0.3, FB = 14 and
Ploop = 0.9). Results for this system are presented in Table II.

C. Spectral Clustering (SC)

This system makes use of the ResNet152-based x-vectors
described in the previous section. The PLDA model is used

TABLE II
RESULTS (%) FOR THE SYSTEM VBX ADAPTED PLDA FOR TRACK 1 ON
DEVELOPMENT AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 16.66 16.26 16.67 15.74
JER 37.19 33.68 37.69 33.75

to transform the x-vectors and reduce their dimensionality
into 160. However, the x-vectors are compared by means
of cosine similarity in order to produce the affinity matrix
used for clustering. The affinity matrix is modified so that
each x-vector has 0.3 extra affinity with the 4 following x-
vectors in order to favor x-vectors close to each other in the
time-domain to be part of the same cluster. Then, only the
affinities between each x-vector and the 27 most affine ones
are kept (the rest are zeroed). Finally, the number of clusters is
estimated using the largest eigen-gap in spectral clustering [8]
assuming a maximum number of clusters to be 20. The x-
vectors are then clustered using k-means. All hyperparameters
were tuned to reach the best performance on the development
set of DIHARD III. Results for this system are presented in
Table III.

TABLE III
RESULTS (%) FOR THE SYSTEM SC FOR TRACK 1 ON DEVELOPMENT AND

EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 16.63 16.51 16.56 15.79
JER 38.67 34.97 38.72 34.46

D. E2E

This system follows the approach described in [9] based
on self-attention and encoder-decoder long short-term memory
based attractors. For training we follow the same approach
as in the paper: we train a model on 100000 simulated
mixtures of two speakers for 100 epochs, followed by the
training of a model with 400000 mixtures of up to 4 speakers
for 25 epochs. Then, we finetune the model to the whole
CALLHOME dataset for another 100 epochs and with up to 7
speakers. For evaluation, we combine the outputs of the system
with some external VAD segmentation as follows: the system
outputs the most likely speaker for each time frame and a
threshold is used to indicate the presence of other speakers in
the same frame; then, the false alarm is compensated with the
corresponding external VAD labels (the oracle VAD for Track
1 and the baseline VAD for Track 2). This system operates
on 8 kHz data, and therefore, the DIHARD III development
and evaluation sets are downsampled to this frequency from
the original 16 kHz. Results for this system are presented in
Table IV.

https://github.com/BUTSpeechFIT/VBx/tree/v1.0_DIHARDII
https://github.com/BUTSpeechFIT/VBx/tree/v1.0_DIHARDII


TABLE IV
RESULTS (%) FOR THE SYSTEM E2E FOR TRACK 1 ON DEVELOPMENT

AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 24.17 20.59 23.51 19.06
JER 56.68 49.76 53.45 45.87

E. DOVERlap

The outputs of the four systems described above are fused
using DOVERlap [2] which is an improved version of the orig-
inal DOVER [10] approach for fusion of diarization systems.
We used the official implementation of DOVERlap as stated in
the paper with the default configuration. Although DOVERlap
uses the outputs of the systems, it does not take any of
the systems as primary and can also deal with overlapping
segments. Results for the output of DOVERlap are presented
in Table V.

TABLE V
RESULTS (%) FOR THE DOVERLAP FUSION FOR TRACK 1 ON

DEVELOPMENT AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 15.86 15.57 16.22 15.26
JER 38.36 34.5 39.47 35.08

F. Overlapped speech detection and handling

The OVD is based on the Conv-TasNet architecture [11] and
its implementation in Asteroid [12]. It uses the encoder and
separator parts of Conv-TasNet followed by softmax to classify
2 ms frames into three classes: silence, single-speaker speech
and overlapped speech. The hyper-parameters used for the
architecture are: N = 192, L = 64, B = 128, Sc = 128, H =
192, X = 4, R = 3. For training, we use DIHARD III dev
set, VoxConverse [13] dev set and three meeting datasets:
ICSI [14], ISL [15] and AMI [16] train set (both beamformed
and Mix-Headset). At first, we sample from the datasets with
ratio 1

3 : 13 : 13 for DIHARD:VoxConverse:meeting datasets and
anneal towards 1:0:0 in each training iteration. In half of the
samples, we use the real data directly and in the other half, we
artificially mix two segments to create more overlap examples.
We use 150k iterations with batch size 24, Adam optimizer and
learning rate 1e-3. For both training and inference, we apply
the network on 3 s segments. We tuned the overlap detection
threshold on the development set but, expecting a slightly
different threshold would work better on the evaluation set
(as the class priors could be different), we tried more than
one threshold. The final threshold was 0.93.

We handle overlaps by assigning a second speaker to those
segments detected as overlaps, chosen as the one with the
highest temporal proximity [17]. We compared this heuristic
with using the second most likely speaker given by VBx (based
on [18]) but, as in [7], this approach worked slightly worse

than the heuristic. Results for the output of DOVERlap with
overlap detection and handling are presented in Table VI.

TABLE VI
RESULTS (%) FOR THE DOVERLAP FUSION WITH OVERLAP DETECTION

FOR TRACK 1 ON DEVELOPMENT AND EVALUATION SETS, CORE AND
FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 15.03 14.30 16.07 14.25
JER 37.72 33.62 39.09 34.32

G. Telephone channel detection

Due to the superior performance of the end-to-end system
with respect to the rest of the systems on the telephone domain,
we decided to use a telephone channel detector. Recordings
identified as telephone were processed only with the E2E
system and the others with the rest of the pipeline. The detector
consisted in averaging the upper part of the spectrogram of the
recording. If the level was below 125, the files were classified
as telephone and as non-telephone otherwise. Results for the
output of DOVERlap with overlap detection and handling for
non-telephone recordings but the E2E system for telephone
ones are presented in Table VII.

TABLE VII
RESULTS (%) FOR THE FINAL SYSTEM FOR TRACK 1 ON DEVELOPMENT

AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 14.56 13.49 15.46 13.29
JER 37.42 32.92 38.68 33.45

H. Track 2 system

For Track 2, we used a similar pipeline as for Track 1 except
for VBx HTPLDA which was not used at all. Also, instead of
the oracle VAD, we used the baseline VAD provided by the
organizers [1] which consists of a TDNN trained on DIHARD
III development set. Since we only submitted the final system,
we do not have results for the intermediate systems for this
track. Results for the system on Track 2 are presented in
Table VIII.

TABLE VIII
RESULTS (%) FOR THE FINAL SYSTEM FOR TRACK 2 ON DEVELOPMENT

AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
Core Full Core Full

DER 17.52 16.32 24.62 21.09
JER 40.72 36.17 44.49 39.28



IV. SYSTEM COMPARISON

A comparison of the results obtained by each system for
Track 1 detailed by the domains on the development set is
presented in Table IX. We observe that the E2E approach
trained on telephone speech obtains the best result in the cts
domain (telephone) by far. However, it also has a performance
on par with the others for audiobooks and sociolinguistic
lab domains. The reason for this is still unclear and requires
further experiments. On one side, these are among the cleanest
domains in terms of background noise; however, the same
could be said about the broadcast interviews or maptask and
yet this approach shows notable performance degradation on
those domains. As for the x-vector based approaches, although
all of them have similar performance for the whole core set, we
see differences of 1 point between the best and worst approach
for almost every domain. With the fusion, we see that in all
domains the resulting system has either better performance
than the best of the four or the performance is close to that
of the best system.

When applying the overlapped speech handling, we obtain
over 5% relative improvement in terms of DER, with some
gain on all of the domains. However, the OVD system was
partially trained on the development set so the results are
over-optimistic. Comparing the results for development and
evaluation on Table X, this is clear with only 0.15% DER
improvement when applying the overlap handling on the core
condition. The effect on the full condition is larger mainly
because a large improvement is obtained on cts, a domain
with a larger proportion in full than in core. However, the
E2E approach has even better performance on such domain
and, it is not over-optimistic; then, the gain on the evaluation
set for full condition is even more.

Results for the different approaches on Track 2 are presented
in Table XI. Although the performance of the final system
shows 22% relative deterioration in Track 2 wrt Track 1
on the development set, the degradation is 55% relative
on the evaluation set, showing that the results on the dev
set are overoptimistic given that the VAD was trained on
such set. When exploring other approaches for VAD, we saw
that usually different domains require different parameters for
voice detection, proving that producing a one-fits-all VAD
system is indeed challenging.

V. HARDWARE REQUIREMENTS

The infrastructure used to run the experiments was, in the
case of CPU, an Intel(R) Xeon(R) CPU 5675 @ 3.07GHz,
with a total memory of 37GB unless specified otherwise. In
the case of GPU, a Tesla P100 PCIe with 16GB of memory
unless specified otherwise.

• The training of the TDNN-based x-vector extractor took
approximately 215 hours on GPU. The extraction of x-
vectors on CPU takes less than 19 s to process 1 minute
of recording.

• The training of the ResNet152-based x-vector extractor
was done on three NVidia Quadro RTX 8000 GPU cores
in parallel and took approximately 60 hours. The training

was done using Pytorch and Horovod parallelization
library. Each job required 35GB of GPU memory and
2GB of CPU memory. The extraction of x-vectors on
CPU takes less than 33 s to process 1 minute of recording.

• The training of each of the PLDA models takes less than
5 minutes.

• AHC has the time complexity O(n3) and memory com-
plexity O(n2), which is in both cases the highest (theo-
retical) complexity out of all the processing steps. There-
fore, AHC could become the bottleneck for very long
utterances. However, even for the longest utterances in
the DIHARD set (around 10 minutes), our non-optimized
python implementation of AHC is still about 20 faster
than realtime. On average, on all the DIHARD recordings
(taking into account only speech and not silence), AHC
is around 100 faster than real-time.

• Bayesian HMM based clustering of x-vectors initialized
from the AHC is more than 200 times faster than real-
time on the DIHARD recordings.

• Producing the diarization output with spectral clustering
with k-means is more than 20 times faster than real-time
on the DIHARD recordings.

• The training of the end-to-end system was performed in a
single GPU and it took around 520 hours. The inference
takes less than 0.1 s to process 1 minute of audio in GPU.

• The training of the OVD system took less than 8.5 hours
in GPU and the evaluation takes around 5 s to process 1
minute of recording in CPU.

• Post-processing the speaker labels for overlap detection
on a recording of 10 minutes varied from less than a sec-
ond to 1 minute depending on the amount of overlapped
speech segments found.

• For training the baseline VAD, the feature extraction was
performed in parallel on 50 CPUs taking less than one
hour. The training was run on GPU and the total time for
the training was approximately 13 hours. For evaluating
recordings, the script takes less than 1 s to process 1
minute of recording on CPU.
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Bayesian HMM based x-vector clustering for the second DIHARD
speech diarization challenge,” in ICASSP 2020-2020 IEEE International



TABLE IX
DER (%) FOR THE DIFFERENT SYSTEMS FOR TRACK 1 ON EACH OF THE DOMAINS OF THE DEVELOPMENT SET, CORE CONDITION.

System ALL audiob. broadc. clinical court cts maptask meeting restaurant soc. field soc. lab webvideo

VBx adapted PLDA 16.66 3.83 2.11 10.32 2.73 17.24 4.92 26.13 40.54 13.36 7.88 36.36
VBx HTPLDA 16.33 2 2.41 10.04 2.9 16.52 4.89 26.52 39.89 12.82 8.13 35.12
SC 16.63 0.38 3.13 11.2 3.5 16.7 6.09 26.87 38.93 13.77 8.33 36.32
E2E 24.17 0.56 14.42 21.62 25.31 9.29 16.97 39.02 53.96 18.86 7.18 40.36

DOVERlap 15.86 0 2.42 9.43 3.01 16.29 4.63 25.94 39.59 12.28 6.99 35.45
+ ov. handling 15.03 0 2.32 9.17 2.77 13.78 3.36 24.59 39.16 11.95 6.33 34.33

Final fusion 14.56 0 2.32 9.17 2.77 9.29 3.36 24.59 39.16 11.95 6.33 34.33

TABLE X
RESULTS (%) FOR THE DIFFERENT SYSTEMS FOR TRACK 1 ON DEVELOPMENT AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
System Core Full Core Full

DER Miss FA SER JER DER Miss FA SER JER DER JER DER JER

VBx adapted PLDA 16.66 10.95 0 5.72 37.19 16.26 10.93 0 5.33 33.68 16.67 37.69 15.74 33.75
VBx HTPLDA 16.33 10.95 0 5.38 36.82 15.98 10.93 0 5.05 33.35 16.54 37.82 15.5 33.61
SC 16.63 10.95 0 5.69 38.67 16.51 10.93 0 5.58 34.97 16.56 38.72 15.79 34.46
E2E 24.17 8.89 1.69 13.59 56.68 20.59 7.82 1.88 10.89 49.76 23.51 53.45 19.06 45.87

DOVERlap 15.86 10.94 0.01 4.92 38.36 15.57 10.92 0 4.65 34.5 16.22 39.47 15.26 35.08
+ ov. handling 15.03 9.76 0.09 5.18 37.72 14.30 9.38 0.11 4.82 33.62 16.07 39.09 14.25 34.32

Final fusion 14.56 9.37 0.27 4.91 37.42 13.49 8.17 0.82 4.49 32.95 15.46 38.68 13.29 33.45

TABLE XI
RESULTS (%) FOR THE DIFFERENT SYSTEMS FOR TRACK 2 ON DEVELOPMENT AND EVALUATION SETS, CORE AND FULL CONDITIONS.

Development Evaluation
System Core Full Core Full

DER Miss FA SER JER DER Miss FA SER JER DER JER DER JER

VBx adapted PLDA 19.49 12.6 0.91 5.98 39.83 19.14 12.59 0.96 5.58 36.43
SC 19.58 12.61 0.91 6.06 41.78 19.52 12.6 0.96 5.95 38.18
E2E 26.14 10.41 2.49 13.24 57.61 22.68 9.39 2.76 10.54 50.86

DOVERlap 19.07 12.57 0.91 5.59 41.66 18.74 12.54 0.97 5.23 37.86
+ ov. handling 17.89 10.32 1.35 6.22 40.99 16.89 9.84 1.4 5.65 36.76

Final fusion 17.52 10.09 1.51 5.91 40.72 16.32 9.17 2.02 5.12 36.17 24.62 44.49 21.09 39.28

Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2020, pp. 6519–6523.
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